Een minimaliseringsprobleem

Probleemstelling | Formules | Oplossing | Illustratie cabrisignal.gif (160 bytes) | Download ][  Analyse


Probleemstelling - minimale oppervlakte van een cilinder bij vaste inhoud terug

figuur 1 minopp1.gif (2400 bytes) Gegeven is een cilinder met een vaste inhoud, zeg 100 cm3.

Bij welke straal van de grondcirkel is de oppervlakte van de cilinder (manteloppervlakte plus oppervlakte van de beide grenscirkels) minimaal?

Formules terug
De straal van de grondcirkel zij r, de hoogte h.

Inhoud: V = p r2h
Manteloppervlakte:    M = 2p rh
Beide cirkels:  C = 2p r2
Totale oppervlakte: O = C + M = 2p r2 + 2p rh = 2p r(r + h)

Oplossing terug
Omdat de inhoud bekend is, drukken we de hoogte h uit in r en V:
   minoppf1.gif (1021 bytes) (zie formule voor M)
en substitueren die waarde in de formule voor O:
   minoppf4.gif (1581 bytes)
Hierdoor is O een functie O(r) van r.
Omdat we een minimum van die functie willen berekenen, bepalen we de afgeleide O’ naar r van O:
   minoppf3.gif (1192 bytes)
Vervolgens bepalen we het tekenschema van O’. Hiertoe lossen we eerst de volgende vergelijking op:
   minoppf2.gif (1526 bytes)
Voor "grote" waarden van r is O’(r) > 0, zodat we het volgende tekenschema krijgen:

       O’(r) ? – – – – – – 0 + + + + + +
r 0 (V/2p )1/3

We vinden dus inderdaad een minimum van O voor de berekende waarde van r.

Voorbeeld
Voor V = 100 cm3:
r = 2,52 cm, h = 5,03 cm
waardoor dus de minimale oppervlakte O(r) = 119,27 cm2.
[einde Voorbeeld]

Illustratie terug

figuur 2 minopp2.gif (4256 bytes) In de figuur hiernaast is de grafiek getekend van de functie O, op basis van een volume V van 100 cm3.

Deze grafiek is gegenereerd met het programma Cabri Geometry II.

figuur 3      minopp3.gif (3804 bytes) Voor V = 50 cm3 krijgen we een grafiek als in figuur 3.

Klik hier Animatievoor een CabriJavapplet hierbij.

Download terug
De tekst op deze pagina is, in een iets andere vorm, ook beschikbaar in PDF-formaat.
Ophalen bestand minopps.pdf [ca. 249Kb]
Klik hier voor het ophalen van de Cabri-figuur [ZIP-bestand, ca. 3 Kb]. In dit bestand zijn mogelijk ook andere figuren opgeslagen.


[minopp.htm] laatste wijziging op: 11-03-01